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We analyze here displacement controlled peeling of a flexible adherent off a thin layer of elastic adhesive,
the elastic modulus of which does not remain uniform but varies periodically along the direction of peeling.
Calculation shows that with progressive peeling, the crack front does not propagate continuously at the inter-
face but intermittently with crack arrests and subsequent initiations. The crack gets arrested close to the
location of the minimum shear modulus of the layer and initiates again only at a sufficiently large peel off load.
This effect is very similar to the peeling experiment off surface patterned and microchannel embedded adhe-
sives which results in significant enhancement of fracture toughness of the interface over smooth adhesive
layers. The fracture toughness of the interface increases with the increase in thickness of the layer and the
amplitude of variation in modulus. Fracture toughness is calculated to be high also for the larger value of
critical stress at the opening of the crack. With the wavelength of modulus variation, it varies nonmonotoni-
cally, maximizing at an intermediate value. These results define the criterion for designing adhesive layers with
spatially modulated physical properties useful for variety of applications.
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I. INTRODUCTION

While adhesion in most practical situations involve a
smooth layer of glue sandwiched between two rigid or flex-
ible adherents, biological adhesives occurring at the feet of
many living species, e.g., house lizards, geckos, tree frogs,
and many insects, are far from homogeneous either in physi-
cal morphology or in material characteristics �1–3�. In fact,
these adhesives are extensively patterned, their surfaces are
hierarchically structured and they even have subsurface fluid
filled vessels, e.g., air pockets �4�, blood vessels �5,6�, and
glands �7–9�, which too affect the mechanism of adhesion at
the surface. Using this gamut of multiple features, these ani-
mals can stick strongly to smooth and rough surfaces alike
but also can dart at a high speed while hanging onto a verti-
cal surface. It has been shown that variety of physical
mechanisms, apart from viscoelasticity, play important roles
in enhancement and modulation of adhesion for these adhe-
sive layers: crack initiation and arrest �10–12�, surface fric-
tion �13,14�, compressive surface stress �15� and self adhe-
sion, and debonding �16�. While the role of the geometric
features of the adhesive patterns is now fairly understood, the
effect of spatial variation in the shear modulus of these layers
has not been looked at in detail. In fact, it is highly unlikely
that the effective modulus of these adhesives should remain
same all through, for example, it should vary because of the
surface and subsurface buried microstructures within these
layers �17,18�. Therefore, the question remains as to how this
spatial modulation should affect the fracture toughness, du-
rability and susceptibility to environment of these adhesives.
In this paper, we analyze this problem by considering a
model adhesive which remains bonded to a rigid substrate
while a flexible plate is lifted off it in a displacement con-
trolled experiment �19�. The shear modulus of this adhesive
is assumed to vary spatially. For simplicity, we consider that
modulus varies only in one direction remaining independent
along the others. Furthermore, we consider peeling of a flex-
ible adherent in contact with the adhesive such that the crack

propagates along the direction in which the modulus of the
adhesive varies. We show that as against smooth and con-
tinuous peeling off an elastic layer with uniform modulus,
here the crack propagates rather discontinuously with inter-
mediate crack arrests and initiations. Crack gets arrested at
the vicinity of the location of lowest modulus only to initiate
again at a large enough applied torque. Once initiated, the
crack propagates catastrophically till it is arrested again at
the vicinity of the next location where the modulus reaches
the minima. This process then results in increase in fracture
toughness of the adhesive over the one with uniform modu-
lus. In addition to thickness of the film, the fracture tough-
ness is found also to be a function of the amplitude of varia-
tion in modulus and its wavelength.

II. PROBLEM FORMULATION

A. Experimental geometry

Fig. 1 depicts the schematic of an experiment in which a
thin layer of an incompressible elastic adhesive having spa-
tially varying modulus remains strongly bonded to a rigid
substrate and a flexible plate is brought in partial contact
with it so that a cusp shaped crack appears at the contact of
the plate and the film. The initial distance of the point of
application of the load from the contact line is adjusted by
placing a spacer of desired height at the opening of the crack.
The plate is then lifted in a displacement controlled manner

FIG. 1. Schematic of the experiment.
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by applying a load on its hanging end. With progressive lift-
ing of the plate, the lifting load increases while the contact
line propagates away from the point of application of the
load. Thus, we consider here one dimensional opening of a
crack: its propagation along −x direction remaining parallel
to y. This description of the adhesive with spatially varying
modulus is in fact inspired by two recent experiments: in
one, the adhesive layer is patterned by incising it laterally
along direction normal to propagation of the crack using a
sharp razor blade �10,11�. The incisions span whole through
the thickness of the layer or partially resulting in the elastic
modulus of the adhesive dropping effectively to zero at the
location of the incisions. Similarly, in another set of experi-
ments, microchannels of appropriate diameter and cross-
sections are embedded within the adhesive layer at desired
vertical locations �15,16�. Several such channels are placed
parallel to each other in a direction normal to the propagation
of the crack, i.e., the contact line between the adhesive and
the flexible adherent. The microchannels are either filled
with air or a liquid of desired viscosity and surface tension
resulting in continuous and periodic variation in the effective
modulus of the adhesive. Variation in modulus of several
functional forms can be generated by suitably choosing the
channels and the fluid inside. Similar to the experiments con-
sidered here, in both these cases, the adhesive remains
strongly bonded to a rigid substrate and a flexible adherent is
lifted off it at a constant rate while the lifting load is mea-
sured. Nevertheless, despite similarities, these geometries do
not exactly conform to the experiment considered here be-
cause of several complications; for example, in the case of
the “microfluidic adhesive,” along with the spatial variation
in modulus, the surface of the layer too bulges out at the
location of channels resulting in periodic undulations. Simi-
larly, for the incision patterned adhesive, the surface does not
remain continuous and the modulus varies discontinuously in
steps. Here we choose to focus on the variation in modulus
of the adhesive leaving aside its geometric variation, which
has been investigated thoroughly in literature in different
contexts.

B. Stress equilibrium relations

Simplicity of the above geometry allows us to assume
plane strain approximation for analyzing the problem, i.e.,
displacement and stress field in the film remains independent
along the y axis. Furthermore, assuming that the shear modu-
lus of the film varies along x remaining independent of thick-
ness of the layer, �=�0 · f�x�, we write the following stress
equilibrium equation in terms of the hydrostatic pressure
p�x� within the film:

−
�p

�x
+ �� �2u

�x2 +
�2u

�z2� + 2
��

�x

�u

�x
= 0

−
�p

�z
+ �� �2w

�x2 +
�2w

�z2 � +
��

�x
� �u

�z
+

�w

�x
� = 0, �1�

where, u and w are the position dependent displacements in
the film along x and z directions, respectively. The incom-
pressibility of the film results in

�u

�x
+

�w

�z
= 0. �2�

These equations are solved using the following set of bound-
ary conditions �b.c.�.

�a� We use no slip boundary condition at the interface
of the film and the substrate �z=0�, which implies
u�z=0�=w�z=0�=0.

�b� At the interface of the film and the flexible plate, i.e.,
at z=h, we assume that the film adheres perfectly with the
plate which undergoes small bending because of peeling.
Hence, the lateral and the vertical displacements of the film
at z=h are expressed as: u�z=h�=0, w�z=h�=�, where �
defines the vertical displacement of the plate; at x�0, it
defines also the deformation of the film at z=h.

�c� Continuity of normal stress across the interface
�z=h� results in normal stress being equal to the bending
stress on plate

�zz�z=h = − D
�4�

�x4 at x � 0, �3�

where, D is the flexural rigidity of the plate. At 0�x�a,
there is no traction either on the film or the plate, which
yields

�xz�z=h = �zz�z=h = 0. �4�

The boundary condition right at the contact line, i.e., at
x=0 is, however, not obvious and requires some discussions.
Classical theory of fracture mechanics for brittle material
suggests that a singular stress field is maintained at the crack
tip in order that the crack propagates. Soft deformable mate-
rials like elastomers, however, undergo deformation resulting
in finite radius of the crack tip. In such a situation, the stress
field cannot asymptotically reach to infinity but to a finite
value which should remain maximum �20�. In essence, in
order that the crack propagates on the surface of the film, the
normal stress at the crack tip is always maintained at a
critical level which results in the boundary condition:
�zz �x=0=�c. This critical stress is an intrinsic property of the
elastomer and remains independent of the geometry of the
experiment �21�. However, whether it should remain inde-
pendent also of the material properties of the elastomer is
debatable, because in the molecular level, formation and fail-
ure of the bonds at the interface is a statistical process which
gets biased by the externally applied stress. As the debonding
stress increases, more bonds fail than they appear; eventu-
ally, at a critical stress, all these bonds break catastrophically
resulting in the macroscopic propagation of the crack �22�. It
is then natural that the critical stress should depend upon the
number of such interfacial bonds which in turn should de-
pend upon the crosslinking density of the elastomer. How-
ever, in our calculation, the critical stress �c is kept constant
by considering that the crosslinking density at the surface of
the elastic layer remains unaltered while that at its bulk may
vary. This situation, in a way, imitates the experiments on
adhesive layers embedded with fluid filled microstructures,
in which, leaving aside many other complexities, effectively
the flexible adherent always remains in contact with a layer
of constant crosslinking density while the local modulus of
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the layer varies at the vicinity of the embedded structures.
Thus, instead of modulus dependent critical stress at the
crack tip we consider a constant critical stress. Based on our
previous experiments on elastic layer with uniform modulus
�10,19�, here, we have carried out calculation for a range of
critical stress values: �c�104–2�105 N /m2.

C. Dimension analysis

Equations �1� followed by the boundary conditions
present a set of nonlinear partial differential equations, which
are not amenable to analytical solutions. However, in order
to have a better theoretical understanding, we can simplify
these set of equations by considering only the dominant
terms while eliminating the ones which are negligibly small.
In this context, it is important to compare the characteristic
lengths along x and z over which the displacements and
stresses vary. In fact it is easy to show that the characteristic
length L along x is considerably larger than that along z, e.g.,
the layer thickness h. It has been shown earlier in the context
of peeling off a layer of constant modulus, i.e., �=�0, that
the normal stress on such a layer remains oscillatory with
exponentially diminishing amplitude. The wavelength of
such oscillation was deduced to be a function of the material
and geometric properties of the adhesive and the adherent
�19�: L�6q−1=6� Dh3

12� �1/6, where D is the flexural rigidity of
the plate and � is the shear modulus of the layer �19,23�. It is
natural to accept L as the characteristic length along x as it
defines the length scale of spatial variation in stresses. The
typical values of L can be obtained by substituting represen-
tative values for different parameters. For example, for h
=300 �m, shear modulus �=106 N /m2, and D=0.02 Nm,
the characteristic length L�3.6 mm, similarly, for h
=800 �m, the same quantity is calculated as 5.84 mm; thus
L is found to be considerably large than h over a large range
of layer thickness. Using these characteristic quantities, we
can then replace the differential operators in Eq. �1�,
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which allows us to identify terms, which are of orders 0� h2

L2 �
and are thus negligibly small with respect to the others. This
process results in the following equations:
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�p
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which appear similar to that derived for the earlier case �19�
except that the constant modulus is replaced by a spatially
varying modulus. Solution of Eq. �6� subjected to the bound-
ary conditions yield the following relations for the displace-
ments within the film, at x�0
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The expressions in Eq. �7� incorporate the effect of func-
tional variation in the modulus and its derivative, which in-
fluence the propagation of crack during peeling of the flex-
ible plate. Here, we will demonstrate this effect by assuming
that the modulus varies sinusoidally along the direction of
propagation of the crack: f�x�=1+� sin kx, where k=2� /�
is the wave number and � is the wavelength. Using this
functional form in Eq. �7� and applying the boundary condi-
tion ��b� and �c�� at the surface of the film, we obtain the
expression for displacement of the plate �=w�z=h�

� =
Dh3

12�0
	 1

�1 + �sin�kx��
�6�

�x6 −
�k cos�kx�

�1 + �sin�kx��2

�5�

�x5

at x � 0,

�4�

�x4 = 0 at 0 � x � a . �8�

We solve Eqs. �8� with the boundary conditions that the dis-
placement of the contacting plate, the shear force on it and
the bending moment are continuous at x=0, which imply that
displacement � and its first to third order derivatives are
continuous at the contact line. In addition, the displacements
of plate satisfy two more boundary conditions: at x=a the
plate remains freely supported, which yields � �x=a=	,
�xx �x=a=0. Furthermore, far away from the contact line, at
x→−
 the vertical displacement of the plate vanishes as-
ymptotically implying that the displacement � and its first
and third order derivatives vanish at x→−
.

Equations �8� present a set of differential equations in
which nonlinearity occurs because of the spatial variation in
modulus. These equations subjected to boundary conditions
are solved numerically for different values of �c, film thick-
ness h, wave number k, and amplitude � of the shear modu-
lus. In the next section, we discuss in detail the results of
these calculations.

III. RESULTS AND DISCUSSIONS

A. Lift off force

Figure 2 shows the lift force to be applied on the hanging
end of the plate in order to drive an interfacial crack. While
for a layer with uniform modulus, the load decreases con-
tinuously with increase in the distance a of the contact line
from the point of application of the load, for a film with
periodic variation in modulus, the load too varies in a peri-
odic manner but discontinuously, showing stick slip behav-
ior. Curves 1, 2�, and 3� representing layers of modulus
�=106, 105, and 2�104 N /m2 show the force vs displace-
ment of the former kind; whereas curves 2–4 for
�0=106 N /m2 and �=0.5, 0.9, and 0.98, respectively, bring
out the crack arresting effect. For example, in curve 3, point
A signifies the location, at which the modulus of the layer is
at its mean value, �=�0=106 N /m2, so that the applied load
F coincides with that is calculated for curve 1. However,
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beyond this point, in the range A and B, the modulus de-
creases with concomitant increase in the lifting load, while
the crack remains almost arrested. The load reaches maxima
at point B, which is rather close to the location of minimum
shear modulus of the layer. Beyond this point, the modulus
increases so that the equilibrium load required to drive the
crack is smaller than F at B. As a result, the crack propagates
rather catastrophically to the region of increasingly higher
modulus, eventually crossing the point C of maximum
modulus. Finally, it slows down and almost stops at the vi-
cinity of the minimum modulus of the layer at D. This cycle
of crack arrest and catastrophic propagation is similar to that
observed with incision patterned elastic films �10,11� and
films with embedded microstructures �15,16�. It is appropri-
ate to mention here that even during catastrophic propaga-
tion, maximum crack speed is rather small �15� �0.3 mm /s,
which allows the equilibrium of forces at the interface of the
adherents. Nevertheless, these observations imply that the
local variation in deformability or the compliance of the ad-
hesive layer engendered by the patterns on its surface or at
its bulk and even uniformly thin layers but with spatially
varying modulus lead to stick slip crack propagation. Curves
2–4 in Fig. 2 show also that this effect gets more prominent
for layers for which modulus varies with larger amplitude.
When the amplitude is small, e.g., for �=0.5 �curve 2�, the
lift off force varies periodically about that for the mean
modulus �curve 1�, however for large enough amplitude
�curves 3 and 4�, the lift off force is calculated to be always
higher than that for the mean modulus.

B. Lifting torque

The effect of enhanced deformability of the layers is fur-
ther investigated by calculating the effective torque applied

at the hanging end of the flexible plate. Figure 3 shows the
plot of lift off torque M =F ·a with respect to the vertical
displacement 	 of the hanging end of the plate. As against
continuously varying torque calculated for layers with uni-
form modulus, here torque varies discontinuously signifying
crack arrest and initiation. M increases with increase in 	 as
the contact line remains stationary at the vicinity of the mi-
crochannel, however decreases catastrophically as the crack
initiates at a critical torque. The lift off torque is calculated
for layers of variety of thickness, h=300–800 �m, critical
stress, �c=1�104–2�105 N /m2, amplitude �=0–0.95,
and wave number k=0.1–1.5 mm−1 of periodic variation in
the modulus of the layer. These values of the parameters are
similar to those in which experiments were conducted on
smooth adhesive films and the ones with surface and subsur-
face patterns. For example, in experiments in which flexible
glass plates are peeled off smooth and patterned elastomeric
layers of poly�dimethylsiloxane� �PDMS�, the critical crack
opening stress is estimated as �19� �4�104–2
�105 N /m2. Similarly, in experiments with microchannel
embedded adhesives �15�, the lateral space � between the
channels is maintained at 3–10 mm. Calculations with above
range of parameter values yield a maximum torque Mmax,
which increases slightly as the contact line moves further
away from the point of application of the load, an observa-
tion seen also during peeling off a microchannel embedded
adhesive film �15�. The curves 1 and 2 in Fig. 3�a� calculated
for �=106 and 105 N /m2, respectively, show that for layers
with uniform modulus, the torque required to propagate the
crack increases significantly with decrease in �. This has to
do with the increase in compliance of the layer which in-
creases with the quantity �24,25� h3 /�. In the context of
elastic layers with spatially varying modulus, the compliance
is also a function of the length scale of this variation. For
example, curves 3–6 in Fig. 3�a� computed for layers with

FIG. 2. �Color online� Typical plots of peel off force as a func-
tion of position of the contact line from the point of application of
the load for various amplitudes of variation in modulus. The data
represents peeling off an elastic film of thickness h=500 �m under
crack tip critical stress �c=7.5�104 N /m2. Curves 1, 3�, and 5�
represent elastic layers of uniform modulus: �=106, 105, and
2�104 N /m2, respectively. Curves 2–4 represent elastic layers of
modulus, �=106�1+� sin�0.65x�� N /m2 �x is in mm� and �=0.5,
0.9, and 0.98, respectively. Curve 5 depicts the sinusoidal variation
in modulus along the direction of propagation of crack front.

FIG. 3. �Color online� The torque M for lifting the flexible
plate plotted against the displacement 	 at its hanging end show
the crack arrest and catastrophic initiation phenomena. �A�
Curves 1 and 2 are plotted for elastic layers of thickness
h=800 �m and uniform modulus �=106 and 105 N /m2, respec-
tively. Curves 3–6 represent films with spatially varying modulus
�=106�1+0.9 sin�kx�� N /m2 with wave number k=0.1, 0.26, 0.77,
and 1.03 mm−1, respectively. �B� Curves 1–5 represent layers of
modulus �=106�1+0.9 sin�0.5x�� N /m2 and thickness h=300,
500, 600, 700, and 800 �m, respectively. The inset shows that the
maximum torque Mmax data from variety of experiments scale lin-
early with the quantity �= �1−��−1/5��ch��D /12�0�1/3 with slope
2.255.
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�0=106 N /m2, �=0.9, and k=0.1, 0.26, 0.77, and
1.03 mm−1, respectively, depict the effect of wavelength of
variation in modulus on the maximum crack initiation
torque, Mmax. When the wavelength is large, the layer gets
maximally compliant so that at the location of minimum
modulus, the maximum torque Mmax coincides with that
computed for �=105 N /m2. However, as the wavelength
decreases, the nonlinear coupling of the gradients of modulus
and the stress fields result in decrease in Mmax which even-
tually approaches a value intermediate to curves 1 and 2. The
maximum torque Mmax however increases significantly with
the increase in h, �c, and �. The M vs 	 data in Fig. 3�b�
plotted for h=300–800 �m depict the dependence of
maximum torque Mmax on thickness of the layers. In fact,
calculation with different values of these parameters
show that Mmax scales linearly with the quantity
�= �1−��−1/5��ch��D /12�0�1/3 �Fig. 3� with slope 2.255,
which corroborates well with similar relation for Mmax de-
rived for incision patterned adhesives �10,11�. The error bars
in this figure are obtained for calculations with different val-
ues of the wave number k=0.65�0.15 mm−1. Here, the
torque data for intermediate values of wave number, i.e.,
k=0.65�0.15 mm−1 are considered, because the fracture
toughness of the interface, estimated as the area under the
force vs displacement plot, is found to maximize within this
range of values of the wave number as shown in Fig. 4�a�.
These results are consistent with the observations in experi-
ments with “microfluidic adhesives” where the fracture
toughness maximizes at an intermediate separation between
the embedded channels. For small wave number, the regions
of minimum modulus of the layer remain further apart; as a
result, an interfacial crack propagates continuously for
longer period than while remaining arrested at the close vi-
cinity of the location of the minimum modulus. With in-
crease in wave number, i.e., decrease in wavelength, the
crack gets arrested more often, as a result, the fracture tough-
ness of the interface increases. However, decrease in the

wavelength of modulus variation is also accompanied by the
decrease in the crack initiation force which leads to decrease
in the area under the force vs. displacement curve. Thus, two
opposing effects of wavelength result in an optimum inter-
mediate range of wavelength at which the fracture energy
attains a maxima.

C. Fracture toughness

Beside wavelength, fracture energy of the interface de-
pends also on the thickness of the layers h and the critical
stress �c at the crack tip. This behavior is similar to the
maximum crack initiation torque. In Fig. 4�a�, the 	E data
plotted for h=500–800 �m and �c=5�104 and 7.5
�104 N /m2 depict this effect: 	E increases with both h and
�c. This dependence can be rationalized by using our earlier
results for continuous peeling of a flexible
adherent off a smooth layer of adhesive �19� for which the
toughness increases with the lifting torque on plate as,
	E�M2 /2D. Since, in our experiments, maximum torque
scales linearly with the quantity, Mmax=2.255�, it is
expected that the fracture toughness should vary
linearly with the quantity �2 /2D. Indeed Fig. 4�b�
shows that 	E vary linearly with the quantity

= �2.255�2�1−��−2/5��ch�2�D /12�0�2/3 /2D with slope 0.905
which is very close to the theoretical value of 1.0. Thus, we
obtain a scaling relation for fracture toughness 	E of the
interface with various material and geometric properties of
the adherents. Furthermore, the calculated values of 	E are
similar to those observed in experiments with adhesives em-
bedded with subsurface structures. For example, for
h=800 �m, the 	E value is calculated as 1.2–1.4 J /m2,
which corroborates well with that obtained from experiments
with microchannel embedded adhesives �1.8 J /m2. Al-
though the above calculations corroborate with many obser-
vations in experiments with patterned adhesives, it does not
replicate the adhesion mechanism completely. For example,
for the michrofluidic adhesive, adhesion strength is influ-
enced also by the Laplace pressure of the liquid inside the
channels besides being affected by the variation in the effec-
tive modulus of the layers as considered here.

IV. SUMMARY

We have presented here a theoretical analysis of peeling a
flexible plate off a layer of elastic adhesive, the shear modu-
lus of which oscillates about a mean value along the direc-
tion of peeling. Calculations show that an interfacial crack
on such an adhesive does not propagate continuously, but
intermittently with crack arrests close to the locations of
minimum modulus of the layers and subsequent crack initia-
tions at a critical lifting torque. Once initiated, the crack
propagates catastrophically till it is arrested again at the vi-
cinity of the subsequent minimum modulus. As a result, the

FIG. 4. �A� Fracture toughness 	E of the interface plotted
against the wavelength of modulus variation � show that 	E
maximizes for an intermediate wavelength. The symbols �

and � represent data computed for a film of thickness
h=800 �m and shear modulus �=106�1+0.9 sin�kx��, k=2� /�
using critical stress �c=5�104 and 7.5�104 N /m2, respectively.
Symbol � represents h=500 �m �=106�1+0.9 sin�kx�� and
�c=5�104 N /m2. �B� The fracture toughness data from different
experiments are plotted against 
=�2 /2D with the result
	E=0.905�2.255�2�1−��−2/5��ch�2�D /12�0�2/3 /2D.
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adhesion toughness of such an adhesive layer is calculated to
be higher than that for a layer with the mean uniform modu-
lus. These results corroborate with the recent experimental
observations for elastic layers with embedded microstruc-
tures for which fluid filled microchannels buried underneath
the adhesive enhance interfacial adhesion significantly. We
have calculated also the effect of critical stress at the crack
tip and the amplitude of variation in modulus of the elastic
layer and obtained the scaling laws which can help in defin-

ing the optimal values of geometric and physical character-
istics of such adhesives.
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